Testi del Syllabus

Resp. Did.	Matricola: null
Anno offerta:	2016/2017
Insegnamento:	1006832 - NANOPHOTONICS
Corso di studio:	5052 - COMMUNICATION ENGINEERING - INGEGNERIA DELLE TELECOMUNICAZIONI
Anno regolamento:	2016
CFU:	6
Settore:	ING-INF/02
Tipo Attività:	D - A scelta dello studente
Anno corso:	1
Periodo:	Secondo Semestre
Sede:	PARMA

Testi in italiano

Lingua insegnamento	Inglese
Contenuti	The course provides an introduction to the newly developing and fascinating area concerned with controlling light at a subwavelength scale. Topics of discussion include: near-field optics, nanoscale quantum emitters, photonic crystals, plasmonics and optical metamaterials. Where necessary, selected elements of related concepts, such as diffraction theory, light-matter interaction, interaction with small structures, and nonlinear optics, are provided too.
Testi di riferimento	 Lukas Novotny and Bert Hecht, Principles of Nano-Optics, Cambridge, 2012 Stefan Maier, Plasmonics: Fundamentals and Applications, Springer, 2007 Course slides are available. Further scientific papers will be indicated during the course.
Obiettivi formativi	The objective of the course is to present a basic overview of nanophotonics including the underlying principles and some current trends. The attendees will be able to understand the light-matter interaction at nanoscale as well as the to study new and potential subwavelength applications.
Prerequisiti	Physics: basic knowledge in fields of optics (ray optics, interference and diffraction of light, principle of laser), electrodynamics (Maxwell equations, wave equation, plane wave, waves in optical materials) and semiconductor physics (energy bands, p-n junction). Mathematics: ability to solve simple partial differential equations.
Metodi didattici	The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Modalità di verifica dell'apprendimento	Homework (during the first part of the semester 30 %), project report (during the second part of the semester 30 %) and written exam (40 %).

Programma esteso	Roughly 4 hours for each topic
3	1. Fields and waves in optics
	2. Resolution and localization, principles of nanoscale optical microscopy
	3. Near-field probes
	4. Optical properties of bulk materials
	5. Light interaction with small structures
	6. Elements of nonlinear optics
	7. Quantum emitters
	8. Wave propagation in periodic media, photonic crystals, coupled
	resonators
	9. Plasmonics
	10. Optical antennas
	11. Metamaterials
	12. Selected applications

😹 Testi in inglese

Lingua insegnamento	English
Contenuti	The course provides an introduction to the newly developing and fascinating area concerned with controlling light at a subwavelength scale. Topics of discussion include: near-field optics, nanoscale quantum emitters, photonic crystals, plasmonics and optical metamaterials. Where necessary, selected elements of related concepts, such as diffraction theory, light-matter interaction, interaction with small structures, and nonlinear optics, are provided too.
Testi di riferimento	 Lukas Novotny and Bert Hecht, Principles of Nano-Optics, Cambridge, 2012 Stefan Maier, Plasmonics: Fundamentals and Applications, Springer, 2007 Course slides are available. Further scientific papers will be indicated during the course.
Obiettivi formativi	The objective of the course is to present a basic overview of nanophotonics including the underlying principles and some current trends. The attendees will be able to understand the light-matter interaction at nanoscale as well as the to study new and potential subwavelength applications.
Prerequisiti	Physics: basic knowledge in fields of optics (ray optics, interference and diffraction of light, principle of laser), electrodynamics (Maxwell equations, wave equation, plane wave, waves in optical materials) and semiconductor physics (energy bands, p-n junction). Mathematics: ability to solve simple partial differential equations.
Metodi didattici	The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.
Modalità di verifica dell'apprendimento	Homework (during the first part of the semester 30 %), project report (during the second part of the semester 30 %) and written exam (40 %).
Programma esteso	 Roughly 4 hours for each topic 1. Fields and waves in optics 2. Resolution and localization, principles of nanoscale optical microscopy 3. Near-field probes 4. Optical properties of bulk materials 5. Light interaction with small structures 6. Elements of nonlinear optics 7. Quantum emitters 8. Wave propagation in periodic media, photonic crystals, coupled resonators 9. Plasmonics

- 10. Optical antennas
 11. Metamaterials
 12. Selected applications